2175 K Street NW Washington DC, 20037

TIMOTHY CONROY

MAE

CONSTRUCTION MANAGEMENT

SPRING 2010

JIM FAUST

§ PROJECT OVERVIEW

- § OVERALL GOAL
- § BACKUP GENERATOR ANALYSIS
- § GREEN ROOF ANALYSIS
- § CURTAIN WALL REDESIGN ANALYSIS
- § SMART POWER STRIP ANALYSIS
- § SUMMARY OF FINDINGS
- § ACKNOWLEDGEMENTS

§ 2175 K STREET NW, WASHINGTON DC 20037

- 8-STORY EXISTING CONCRETE BUILDING (BUILT IN 1981)
- 3-NEW STRUCTURAL STEEL LEVELS
- 108,000 square feet
- 37,500 SQUARE FEET NEW CONSTRUCTION
- CONTRACT VALUE: \$15.5 MILLION GMP
- DELIVERY METHOD: CM AGENCY WITH GC
- § SCHEDULE DURATION: FEB 07 TO MAR 10

PROJECT TEAM

- OWNER: MINSTALL STEWART PROPERTIES
- ARCHITECT: FOX ARCHITECTS
- STRUCTURAL ENGINEER: RATHGEBER/GOSS ASSOCIATES
- MEP ENGINEER: META ENGINEERS
- § GENERAL CONTRACTOR: JAMES G. DAVIS CONSTRUCTION

- § PROJECT OVERVIEW
- § OVERALL GOAL
- § BACKUP GENERATOR ANALYSIS
- § Green Roof Analysis
- § CURTAIN WALL REDESIGN ANALYSIS
- § SMART POWER STRIP ANALYSIS
- § SUMMARY OF FINDINGS
- § ACKNOWLEDGEMENTS

THE THEME FOR THE SELECTED ANALYSIS TOPICS IS REDUCING
BUILDING ELECTRICITY CONSUMPTION WHILE MINIMIZING
UPFRONT COSTS WHEREVER POSSIBLE AND PROVIDING THE OWNER
WITH A BUILDING WITH A HIGHER OVERALL VALUE.

http://www.geindustrial.com/

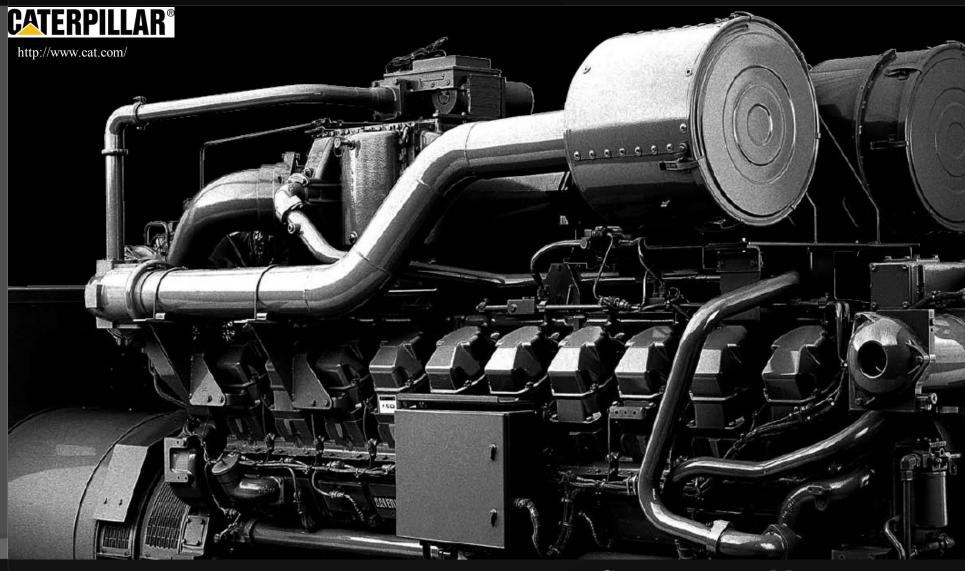
GREEN BUILDING RESEARCH

IN THE UNITED STATES ALONE, BUILDINGS ACCOUNT FOR:

- 72% OF ELECTRICITY CONSUMPTION,
- 39% of energy use,
- 38% OF ALL CARBON DIOXIDE (CO_2) EMISSIONS,
- 40% of raw materials use,
- 30% of waste output (136 million tons annually), and
- 14% OF POTABLE WATER CONSUMPTION.

http://www.usgbc.org/DisplayPage.aspx?CMSPageID=1718

PRESENTATION OUTLINE


BACKUP GENERATOR ANALYSIS

- § PROJECT OVERVIEW
- § OVERALL GOAL
- BACKUP GENERATOR ANALYSIS

AREA OF POTENTIAL IMPROVEMENT

- PROPOSED SOLUTION
- BENEFITS AND DRAWBACKS
- RESULTING ENERGY SAVINGS
- SOUND ATTENUATION
- SCHEDULE AND CONSTRUCTABILITY
- CONCLUSION
- § GREEN ROOF ANALYSIS
- § CURTAIN WALL REDESIGN ANALYSIS
- § SMART POWER STRIP ANALYSIS
- § SUMMARY OF FINDINGS
- § ACKNOWLEDGEMENTS

THERE ARE SUBSTANTIAL COSTS ASSOCIATED WITH BACKUP
GENERATORS YET THEY ARE ONLY USED IN AN EMERGENCY SITUATION
OR TO TEST ITS OPERATION

- § PROJECT OVERVIEW
- § OVERALL GOAL
- BACKUP GENERATOR ANALYSIS
 AREA OF POTENTIAL IMPROVEMENT
- PROPOSED SOLUTION
- BENEFITS AND DRAWBACKS
- RESULTING ENERGY SAVINGS
- SOUND ATTENUATION
- SCHEDULE AND CONSTRUCTABILITY
- CONCLUSION
- § GREEN ROOF ANALYSIS
- § CURTAIN WALL REDESIGN ANALYSIS
- SMART POWER STRIP ANALYSIS
- § SUMMARY OF FINDINGS
- § ACKNOWLEDGEMENTS

Is it possible to use the building's existing backup generator to offset its electrical usage?

THIS ANALYSIS LOOKS INTO THE FEASIBILITY OF THE ABOVE STATEMENT

BACKUP GENERATOR ANALYSIS

- § PROJECT OVERVIEW
- § OVERALL GOAL
- BACKUP GENERATOR ANALYSIS
 AREA OF POTENTIAL IMPROVEMENT
- PROPOSED SOLUTION
- BENEFITS AND DRAWBACKS
- RESULTING ENERGY SAVINGS
- SOUND ATTENUATION
- SCHEDULE AND CONSTRUCTABILITY
- Conclusion
- § GREEN ROOF ANALYSIS
- S CURTAIN WALL REDESIGN ANALYSIS
- § SMART POWER STRIP ANALYSIS
- § SUMMARY OF FINDINGS
- § ACKNOWLEDGEMENTS

BENEFITS

OFFSET BUILDING'S ELECTRICAL DEMAND

DRAWBACKS

DANGEROUS BYPRODUCTS OF COMBUSTION
SOUND GENERATION AND HEARING LOSS

TIMOTHY CONROY

2175 K STREET NW, WASHINGTON DC 20037

Construction Management

- § PROJECT OVERVIEW
- § OVERALL GOAL
- BACKUP GENERATOR ANALYSIS
- AREA OF POTENTIAL IMPROVEMENT
- PROPOSED SOLUTION
- BENEFITS AND DRAWBACKS
- RESULTING ENERGY SAVINGS
- SOUND ATTENUATION
- SCHEDULE AND CONSTRUCTABILITY
- Conclusion
- § GREEN ROOF ANALYSIS
 - CURTAIN WALL REDESIGN ANALYSIS
- § SMART POWER STRIP ANALYSIS
- § SUMMARY OF FINDINGS
- § ACKNOWLEDGEMENTS

<u>BASE CASE</u> (CUMMINS DIESEL GENERATOR)

- •CAPACITY: 350 KW
- •FUEL CONSUMPTION: 23.15 GAL/HR
- •YEARLY SAVINGS: \$96,283
- •YEARLY FUEL COST: \$143,782
- •NET SAVINGS: -\$47,499
- •Break Even: 15.50 gal/hr

	Energ	y Calculations										
avings Subtotal												
Daily	\$92.58	\$185.16	\$277.74	\$370.32								
Weekly	\$462.90	\$925.80	\$1,388.70	\$1,851.60								
Monthly	\$1,851.60	\$3,703.20	\$5,554.80	\$7,406.40								
Yearly	\$24,070.80	\$48,141.60	\$72,212.40	\$96,283.20								
uel Consumption												
	Gallons											
Daily	53.36	92.56	136.96	185.20								
Weekly	266.80	462.80	684.80	926.00								
Monthly	1,067.20	1,851.20	2,739.20	3,704.00								
Yearly	13,873.60	24,065.60	35,609.60	48,152.00								
uel Costs												
Daily	\$159.33	\$276.38	\$408.96	\$553.01								
Weekly	\$796.66	\$1,381.92	\$2,044.81	\$2,765.04								
Monthly	\$3,186.66	\$5,527.68	\$8,179.25	\$11,060.14								
Yearly	\$41,426.57	\$71,859.88	\$106,330.27	\$143,781.87								
et Savings												
Daily	3 (\$66.75)	(\$91.22)	% (\$131.22) \$	\$ (\$182.69)								
Weekly			% (\$656.11) \$									
Monthly	(\$1,335.06)											
Yearly	(\$17,355.77)											
	*Current fuel tank	is rated for 4 hou	ırs of continuous o _l	peration.								

BACKUP GENERATOR ANALYSIS

- PROJECT OVERVIEW
- OVERALL GOAL
 - AREA OF POTENTIAL IMPROVEMENT

BACKUP GENERATOR ANALYSIS

- PROPOSED SOLUTION
- BENEFITS AND DRAWBACKS
- RESULTING ENERGY SAVINGS
- SOUND ATTENUATION
- SCHEDULE AND CONSTRUCTABILITY
- CONCLUSION
- GREEN ROOF ANALYSIS
- CURTAIN WALL REDESIGN ANALYSIS
- SMART POWER STRIP ANALYSIS
- SUMMARY OF FINDINGS
- ACKNOWLEDGEMENTS

ALTERNATE CASE (CAT NATURAL GAS GENERATOR)

- •CAPACITY: 1040 KW
- •Fuel Consumption: 7899 ft³/hr
- YEARLY SAVINGS: \$333,782
- YEARLY FUEL COST: \$198,473
- •NET SAVINGS: \$135,308
- •BREAK EVEN: N/A

		Ener	rgy	Calculation	S				
Savings Subtotal									
Daily	_	\$320.94		\$641.89		\$962.83		\$1,283.78	
Weekly		\$1,604.72		\$3,209.44		\$4,814.16		\$6,418.88	ı
Monthly		\$6,418.88		\$12,837.76		\$19,256.64		\$25,675.52	ı
Yearly		\$83,445.44		\$166,890.88		\$250,336.32		\$333,781.76	ı
Fuel Consumption									ı
	_			Thousand	Cub	ic Feet			ı
Daily		23.38		36.65		49.29		63.19	ı
Weekly		116.91		183.26		246.45		315.96	ı
Monthly		467.62		733.03		985.80		1,263.84	ı
Yearly		6,079.07		9,529.35		12,815.34		16,429.92	ı
Fuel Costs									ı
Daily	_	\$282.44		\$442.75		\$595.42		\$763.36	ı
Weekly		\$1,412.21		\$2,213.74		\$2,977.10		\$3,816.80	ı
Monthly		\$5,648.86		\$8,854.97		\$11,908.41		\$15,267.19	ı
Yearly		\$73,435.17		\$115,114.59		\$154,809.28		\$198,473.43	ı
Net Savings									ı
Daily	-	\$38.50	1	\$199.14	1	\$367.41	1	\$520.42	ı
Weekly	1	\$192.51	1	\$995.70	1	\$1,837.06	1	\$2,602.08	ı
Monthly	1	\$770.02	4	\$3,982.79	4	\$7,348.23	4	\$10,408.33	
Yearly	1	\$10,010.27	1	\$51,776.29	1	\$95,527.04	1	\$135,308.33	
	*80	ased Upon Ca	ıt Na	tural Gas Ger	nerai	tor Model G3	412	1040kW	

BASE CASE (CUMMINS DIESEL GENERATOR)

- •CAPACITY: 350 KW
- •FUEL CONSUMPTION: 23.15 GAL/HR
- YEARLY SAVINGS: \$96,283
- •YEARLY FUEL COST: \$143,782
- •NET SAVINGS: -\$47,499
- •Break Even: 15.50 gal/hr

	Energy Calculations												
s Subtotal													
		\$92.58		\$185.16		\$277.74		\$370.32					
dy		\$462.90		\$925.80		\$1,388.70		\$1,851.60					
hly		\$1,851.60		\$3,703.20		\$5,554.80		\$7,406.40					
ly		\$24,070.80		\$48,141.60		\$72,212.40		\$96,283.20					
onsumption													
				Gall	lons	s							
		53.36		92.56		136.96		185.20					
dy		266.80		462.80		684.80		926.00					
hly		1,067.20		1,851.20		2,739.20		3,704.00					
ly		13,873.60		24,065.60		35,609.60		48,152.00					
osts	-	Ø150.22		0276.20		¢400.06		Ø552.01					
1		\$159.33		\$276.38		\$408.96		\$553.01					
dy		\$796.66		\$1,381.92		\$2,044.81		\$2,765.04					
hly		\$3,186.66		\$5,527.68		\$8,179.25		\$11,060.14					
ly		\$41,426.57		\$71,859.88		\$106,330.27		\$143,781.87					
vings													
	×	(\$66.75)	×	(\$91.22)	×	(\$131.22)	×	(\$182.69)					
dy	×	(\$333.76)	×	(\$456.12)	×	(\$656.11)	×	(\$913.44)					
hly	×	(\$1,335.06)	×	(\$1,824.48)	×	(\$2,624.45)	×	(\$3,653.74)					
ly	×	(\$17,355.77)	×	(\$23,718.28)	×	(\$34,117.87)	×	(\$47,498.67)					

TIMOTHY CONROY

2175 K STREET NW, WASHINGTON DC 20037

CONSTRUCTION MANAGEMENT

*Current fuel tank is rated for 4 hours of continuous operation.

- § PROJECT OVERVIEW
- § OVERALL GOAL
- BACKUP GENERATOR ANALYSIS
- AREA OF POTENTIAL IMPROVEMENTPROPOSED SOLUTION
- BENEFITS AND DRAWBACKS
- RESULTING ENERGY SAVINGS
- SOUND ATTENUATION
- SCHEDULE AND CONSTRUCTABILITY
- CONCLUSION
- § GREEN ROOF ANALYSIS
- CURTAIN WALL REDESIGN ANALYSIS
- § SMART POWER STRIP ANALYSIS
- § SUMMARY OF FINDINGS
- § ACKNOWLEDGEMENTS

Transmission Loss										
	Frequency (Hz.)									
Material	125	250	500	1000	2000	4000				
Concrete	38	43	52	59	67	72				
CMU	34	40	44	49	59	64				
Door	23	28	36	41	39	44				

Sound Transmission											
Material	Tau										
Concrete	1.58E-04	5.01E-05	6.31E-06	1.26E-06	2.00E-07	6.31E-08					
CMU	3.98E-04	1.00E-04	3.98E-05	1.26E-05	1.26E-06	3.98E-07					
Door	5.01E-03	1.58E-03	2.51E-04	7.94E-05	1.26E-04	3.98E-05					
Composite TL	29.5	34.6	41.9	47.0	46.4	51.4					
Generator	100.3	104.8	109.9	113.1	111.7	109.7					
Resulting Sound Level	70.8	70.2	68.0	66.1	65.3	58.3					

Resulting Sound Level 70.8 70.2 68.0 66.1 65.3 58.3

BASE CONSTRUCTION

CONCRETE AND CMU WALL

2" THK HOLLOW METAL DOOR

PRESENTATION OUTLINE

BACKUP GENERATOR ANALYSIS

ALTERNATE CONSTRUCTION

CONCRETE AND CMU WALL

2" THK HOLLOW METAL DOOR

2"X 4" STAGGERED WOOD STUDS

16" o.c.

5/8" GYPSUM BOARD BOTH SIDES

- § PROJECT OVERVIEW
- § OVERALL GOAL
- BACKUP GENERATOR ANALYSIS
- PROPOSED SOLUTION
- BENEFITS AND DRAWBACKS
- RESULTING ENERGY SAVINGS
- SOUND ATTENUATION
- SCHEDULE AND CONSTRUCTABILITY

AREA OF POTENTIAL IMPROVEMENT

- CONCLUSION
- § GREEN ROOF ANALYSIS
- § CURTAIN WALL REDESIGN ANALYSIS
- § SMART POWER STRIP ANALYSIS
- § SUMMARY OF FINDINGS
- § ACKNOWLEDGEMENTS

Goal Transmission Loss											
		Frequency (Hz.)									
Location Type	125	250	500	1000	2000	4000					
Office Activities	50	50	50	50	50	50					
Classroom	66	72	77	74	68	60					
Normal Conversation	57	62	63	57	48	40					

Transmission Loss											
		Frequency (Hz.)									
Material	125	250	500	1000	2000	4000					
Construction No. 7	17	31	33	40	38	36					
Construction No. 8	15	30	34	44	46	41					
Construction No. 9	23	28	29	46	54	44					

Sound Transmission										
Tau										
2.00E-02 7.94E-04	5.01E-04 1.00E-04	1.58E-04 2.51E-04								
3.16E-02 1.00E-03	3.98E-04 3.98E-05	2.51E-05 7.94E-05								
5.01E-03 1.58E-03	1.26E-03 2.51E-05	3.98E-06 3.98E-05								
	2.00E-02 7.94E-04 3.16E-02 1.00E-03	Tau 2.00E-02 7.94E-04 5.01E-04 1.00E-04 3.16E-02 1.00E-03 3.98E-04 3.98E-05								

Composite TL										
Construction No. 7	46.5	65.6	74.9	87.0	84.4	87.4				
Construction No. 8	44.5	64.6	75.9	91.0	92.4	92.4				
Construction No. 9	52.5	62.6	70.9	93.0	100.4	95.4				

Resulting Sound Level										
Construction No. 9	47.8	42.2	39.0		20.1	11.3	1	4.3		22.3
		COIISH HCHOII	110. 0	٥. د د	70.2	57.0	44.	17.2		17.3
		Construction	No. 9	47.8	42.2	39.0	20.1	11.3		14.3

BASE CONSTRUCTION

CONCRETE AND CMU WALL
2" THK HOLLOW METAL DOOR

Transmission Loss										
	Frequency (Hz.)									
Material	125	250	500	1000	2000	4000				
Concrete	38	43	52	59	67	72				
CMU	34	40	44	49	59	64				
Door	23	28	36	41	39	44				

Sound Transmission												
Material		Tau										
Concrete	1.58E-04	5.01E-05	6.31E-06	1.26E-06	2.00E-07	6.31E-0						
CMU	3.98E-04	1.00E-04	3.98E-05	1.26E-05	1.26E-06	3.98E-0						
Door	5.01E-03	1.58E-03	2.51E-04	7.94E-05	1.26E-04	3.98E-0						
omposite TL	29.5	34.6	41.9	47.0	46.4	51.4						
enerator	100.3	104.8	109.9	113.1	111.7	109.7						

Resulting Sound Level 70.8 70.2 68.0 66.1 65.3 58.3

		_

 Resulting Sound Level
 70.8
 70.2
 68.0
 66.1
 65.3
 58.3

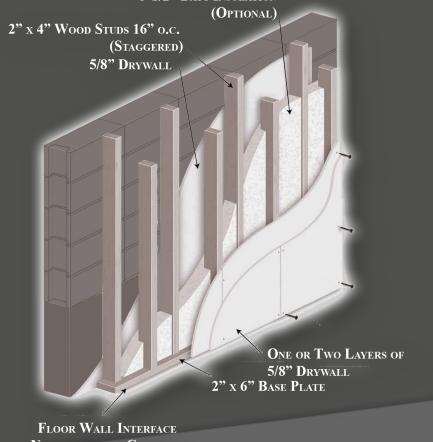
TIMOTHY CONROY

2175 K STREET NW, WASHINGTON DC 20037

- § PROJECT OVERVIEW
- § OVERALL GOAL
- BACKUP GENERATOR ANALYSIS
- Area of Potential Improvement
- PROPOSED SOLUTION
- BENEFITS AND DRAWBACKS
- RESULTING ENERGY SAVINGS
- SOUND ATTENUATION
- SCHEDULE AND CONSTRUCTABILITY
- CONCLUSION
- § GREEN ROOF ANALYSIS
- § CURTAIN WALL REDESIGN ANALYSIS
- SMART POWER STRIP ANALYSIS
- § SUMMARY OF FINDINGS
- § ACKNOWLEDGEMENTS

SCHEDULE IMPACT

- •CONSTRUCTION TIME: 1-2 DAYS
- •GAS LINE INSTALLATION: 15 TO 20 DAYS
- •NET IMPACT ON OVERALL SCHEDULE: 0 DAYS


CONSTRUCTABILITY IMPACT

- •ALL GENERATORS STUDIED FIT WITHIN SPACE CONSTRAINTS
- •No Additional Ductwork Needed

PAYBACK PERIOD

GENERATOR Type	CAPACITY (KW)	ANNUAL ENERGY SAVINGS	Cost	Additional Cost	PAYBACK PERIOD
DIESEL	300	(\$47,499)	\$58,800		N/A
Natural Gas	350	(\$35)	\$137,200	\$40,076	N/A
NATURAL GAS	450	\$6,054	\$176,400	\$40,076	35.76
NATURAL GAS	1040	\$135,308	\$507,680	\$40,076	4.05

Proposed Wall Construction 3-1/2" Batt Insulation

BOTH SIDES

Generator Room Layout

- § OVERALL GOAL
- BACKUP GENERATOR ANALYSIS
 AREA OF POTENTIAL IMPROVEMENT
- Proposed Solution
- BENEFITS AND DRAWBACKS
- RESULTING ENERGY SAVINGS
- SOUND ATTENUATION
- SCHEDULE AND CONSTRUCTABILITY
- CONCLUSION
- § GREEN ROOF ANALYSIS
- § CURTAIN WALL REDESIGN ANALYSIS
- § SMART POWER STRIP ANALYSIS
- § SUMMARY OF FINDINGS
- § ACKNOWLEDGEMENTS

Conclusions

- •NATURAL GAS GENERATORS ARE BETTER SUITED
- •EFFICIENCY CAN BE GAINED WITH LARGER CAPACITY GENERATORS
- •PRE-PLANNING IS A MUST
 - •GENERATOR SELECTION
 - •ENCLOSURE CONSTRUCTION
 - •ADEQUATE FUEL SUPPLY
- •FURTHER RESEARCH NEEDED INTO MORE EFFERENT GENERATORS

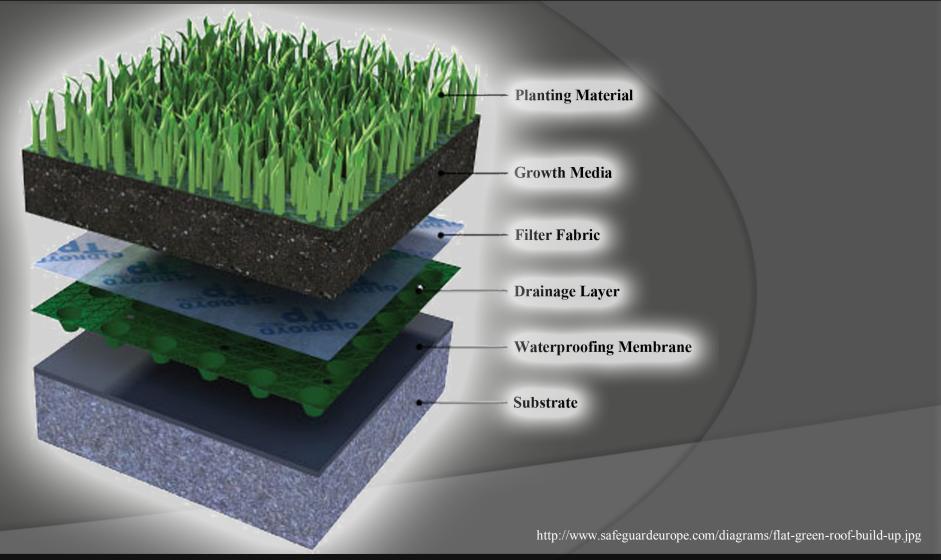
Summary												
		Frequency (Hz.)										
	125	250	500	1000	2000	4000	Activity					
Construction No. 7												
Office Activities	×	4	4	4		4	×					
Classroom	4	4	4	4	4	4	4					
Normal Conversation	4	4	4	4	4	4	4					
Construction No. 8												
Office Activities	×	4	4	4	4	4	×					
Classroom	4	4	4	4	4	4	4					
Normal Conversation	4	4	4	4	4	4	4					
Construction No. 9												
Office Activities	4	4	4	4	4	4	4					
Classroom	4	4	4	4	4	4	4					
Normal Conversation	4	4	4	4	4	4	4					

Construction Description									
Construction No. 7	2 by 4 wood studs 16 in oc with 1/2-in gypsum board both sides								
Construction No. 8	Construction No. 7 with 2-in glass-fiber insulation in cavity								
Construction No. 9	2 by 4 staggered wood studs 16 in oc with 5/8-in gypsum board both sides								

- § PROJECT OVERVIEW
- § OVERALL GOAL
- § BACKUP GENERATOR ANALYSIS
- GREEN ROOF ANALYSIS
- Area of Potential Improvement
- PROPOSED SOLUTION
- BENEFITS AND DRAWBACKS
- Description of Existing Design
- PROPOSED CHANGES
- STRUCTURAL LOAD ANALYSIS
- RESULTING ENERGY SAVINGS
- COST ANALYSIS
- SCHEDULE AND CONSTRUCTABILITY
- CONCLUSION
- § CURTAIN WALL REDESIGN ANALYSIS
- SMART POWER STRIP ANALYSIS
- § SUMMARY OF FINDINGS
- § ACKNOWLEDGEMENTS

BUILDING ROOF ACCOUNTS FOR 25% OF BUILDING ENVELOPE

Numerous environmental benefits


OCCUPANT BENEFITS

TIMOTHY CONROY

2175 K STREET NW, WASHINGTON DC 20037

- § PROJECT OVERVIEW
- § OVERALL GOAL
- § BACKUP GENERATOR ANALYSIS
 - GREEN ROOF ANALYSIS
 - Area of Potential Improvement
 - PROPOSED SOLUTION
 - BENEFITS AND DRAWBACKS
 - DESCRIPTION OF EXISTING DESIGN
 - PROPOSED CHANGES
 - STRUCTURAL LOAD ANALYSIS
 - RESULTING ENERGY SAVINGS
 - COST ANALYSIS
 - SCHEDULE AND CONSTRUCTABILITY
 - CONCLUSION
- § CURTAIN WALL REDESIGN ANALYSIS
- § SMART POWER STRIP ANALYSIS
- § SUMMARY OF FINDINGS
- § ACKNOWLEDGEMENTS

Utilize the beneficial properties of a green roof to add Value to the project while minimizing the added cost

GREEN ROOF ANALYSIS

- PROJECT OVERVIEW
- § OVERALL GOAL
- § BACKUP GENERATOR ANALYSIS
- § GREEN ROOF ANALYSIS
- Area of Potential Improvement
- PROPOSED SOLUTION
- BENEFITS AND DRAWBACKS
- DESCRIPTION OF EXISTING DESIGN
- PROPOSED CHANGES
- STRUCTURAL LOAD ANALYSIS
- RESULTING ENERGY SAVINGS
- COST ANALYSIS
- SCHEDULE AND CONSTRUCTABILITY
- Conclusion
- § CURTAIN WALL REDESIGN ANALYSIS
- § SMART POWER STRIP ANALYSIS
- § SUMMARY OF FINDINGS
- § ACKNOWLEDGEMENTS

BENEFITS

Increased durability of roof assembly
Allows time for vegetation to develop before installation
Reduced Heat Island Effect
Reduction of Smog
Decreased stormwater runoff
Added Habitat for birds, plants, and insects

DRAWBACKS

MODULAR SYSTEM HAS A NEGLIGIBLE EFFECT ON THERMAL RESISTANCE
INCREASED STRUCTURAL LOADS
ADDED MAINTENANCE

GREEN ROOF ANALYSIS

- § PROJECT OVERVIEW
- § OVERALL GOAL
- § BACKUP GENERATOR ANALYSIS
- GREEN ROOF ANALYSIS
- AREA OF POTENTIAL IMPROVEMENT
- PROPOSED SOLUTION
- BENEFITS AND DRAWBACKS
- DESCRIPTION OF EXISTING DESIGN
- PROPOSED CHANGES
- STRUCTURAL LOAD ANALYSIS
- RESULTING ENERGY SAVINGS
- COST ANALYSIS
- SCHEDULE AND CONSTRUCTABILITY
- CONCLUSION
- § CURTAIN WALL REDESIGN ANALYSIS
- § SMART POWER STRIP ANALYSIS
- § SUMMARY OF FINDINGS
- § ACKNOWLEDGEMENTS

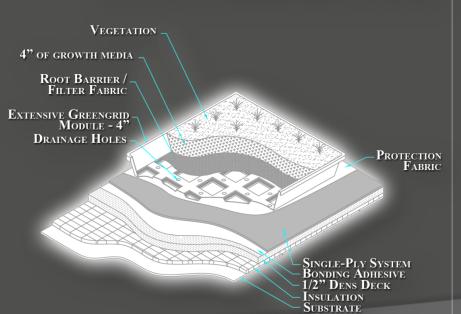
EXISTING SYSTEM

GRAVEL BALLAST

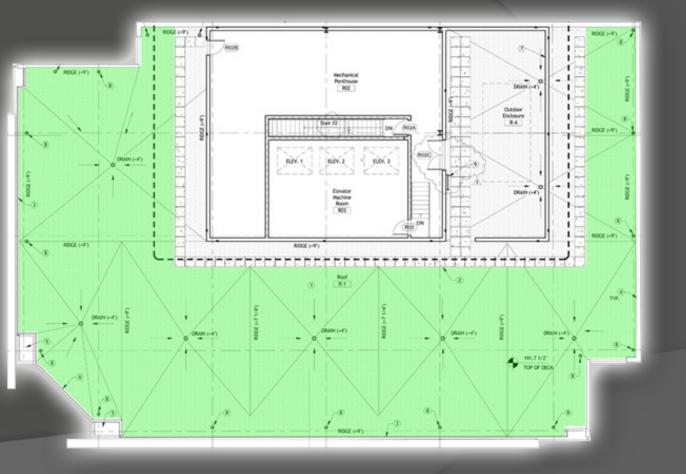
FULLY ADHERED SINGLE PLY EPDM

RIGID INSULATION TAPERED TOWARD THE ROOF DRAINS

3" DEEP RIB 20 GAUGE METAL ROOF DECK



- § PROJECT OVERVIEW
- § OVERALL GOAL
- § BACKUP GENERATOR ANALYSIS
 - GREEN ROOF ANALYSIS
 - AREA OF POTENTIAL IMPROVEMENT
 - PROPOSED SOLUTION
 - BENEFITS AND DRAWBACKS
 - DESCRIPTION OF EXISTING DESIGN
 - PROPOSED CHANGES
 - STRUCTURAL LOAD ANALYSIS
 - RESULTING ENERGY SAVINGS
 - COST ANALYSIS
 - SCHEDULE AND CONSTRUCTABILITY
 - CONCLUSION
- § CURTAIN WALL REDESIGN ANALYSIS
- § SMART POWER STRIP ANALYSIS
- § SUMMARY OF FINDINGS
- § ACKNOWLEDGEMENTS


GREEN ROOF
(GREENGRID® SYSTEM)

- EXTENSIVE GREENGRID® ROOF SYSTEM
- VEGETATION
- 4" OF GROWTH MEDIA
- ROOT BARRIER/FILTER FABRIC
- Green Grid Module
- Unit Weight 20 psf
- Installation Rate: 3,000 to 5,000 sqft per day (8,000 sqft max)
- No Installation Between October and April

Extensive
Greengrid(R) Green Roof System
Typical Assembly for a
Single-Ply System (EPDM, TPO, PVC, Mod Bit)

GREEN ROOF AREA

PRESENTATION OUTLINE

GREEN ROOF ANALYSIS

- PROJECT OVERVIEW
- OVERALL GOAL
- BACKUP GENERATOR ANALYSIS
 - GREEN ROOF ANALYSIS
 - AREA OF POTENTIAL IMPROVEMENT
 - PROPOSED SOLUTION
 - BENEFITS AND DRAWBACKS
- DESCRIPTION OF EXISTING DESIGN
- PROPOSED CHANGES
- STRUCTURAL LOAD ANALYSIS
- RESULTING ENERGY SAVINGS
- COST ANALYSIS
- SCHEDULE AND CONSTRUCTABILITY
- CONCLUSION
- CURTAIN WALL REDESIGN ANALYSIS
- SMART POWER STRIP ANALYSIS
- SUMMARY OF FINDINGS
- ACKNOWLEDGEMENTS

STRUCTURAL LOAD ANALYSIS

LIMITING FACTOR: BEAMS CONCRETE ON METAL DECK: 3C20 - 7" (T=4") NW

LOAD CARRYING CAPACITY: BEAMS: REVERSE LOOKUP IN STEEL MANUAL DECK: VOLCRAFT DECK CATALOGUE

SEVEN LOAD COMBINATIONS CHECKED

RESULTING NET ADDITIONAL LOAD: 69.60 PSF

	Structural Carculations (Green 1001)															
														Deck Wt		
			Weight	Length	Spacing	fM_P	Lo	oad	Controlling	Beam Wt	Net I	oad	7'	' (t=4") NV	V	Net Allowable Load
ınction	No.	Size	lb/lf	ft	ft	ft-K	k/ft	1b/ft	Load	lb/ft	lb/ft	1b/ft ²	Туре	1b/ft ²	Capacity	1 b/ft ²
								1								
	1	W18x35	35	36.33	7.75	249	1.51	1508.96	1077.83	35	1042.83	134.56	3C20	53.00	98.00	81.56
	2	W18X35	35	35.08	8.50	249	1.62	1618.41	1156.00	35	1121.00	131.88	3C20	53.00	98.00	78.88
	3	W18x35	35	35.08	9.00	249	1.62	1618.41	1156.00	35	1121.00	124.56	3C20	53.00	98.00	71.56
	4	W18x35	35	35.08	6.75	249	1.62	1618.41	1156.00	35	1121.00	166.07	3C20	53.00	98.00	113.07
	5	W21X44	44	39.51	8.50	358	1.83	1834.64	1310.45	44	1266.45	148.99	3C20	53.00	98.00	95.99
Ī	6	W21X44	44	39.51	7.88	358	1.83	1834.64	1310.45	44	1266.45	160.82	3C20	53.00	98.00	107.82
	7	W18x40	40	37.58	9.13	294	1.67	1665.12	1189.37	40	1149.37	125.96	3C20	53.00	98.00	72.96
	8	W18x40	40	37.58	9.38	294	1.67	1665.12	1189.37	40	1149.37	122.60	3C20	53.00	98.00	69.60
	9	W21x44	44	36.58	6.00	358	2.14	2139.96	1528.55	44	1484.55	247.42	3C20	53.00	98.00	194.42
am	10	W21X44	44	37.58	4.32	358	2.03	2027.60	1448.29	44	1404.29	325.16	3C20	53.00	98.00	272.16
Beam	11*	W18x76	76	35.08	9.00	611	3.97	3971.27	2836.62	76	2760.62	306.75	3C20	53.00	98.00	253.75
	12*	W18x60	60	36.33	7.75	461	2.79	2793.70	1995.50	60	1935.50	249.74	3C20	53.00	98.00	196.74
-	13	W21x50	50	39.51	6.84	413	2.12	2116.49	1511.78	50	1461.78	213.67	3C20	53.00	98.00	160.67
	14	W12x19	19	24.50	6.63	92.6	1.23	1234.15	878.46	19	859.46	129.73	3C20	53.00	98.00	76.73
	15	W18x40	40	24.50	3.83	294	3.92	3918.37	2798.83	40	2758.83	719.76	3C20	53.00	98.00	666.76

18 W12x14 14 6.50 5.75 65.2 12.35 12345.56 8818.26 14 8804.26 1531.18 3C20

20 W21x44 44 23.25 5.25 358 5.30 5298.18 3784.42 44 3740.42 712.46 3C20 53.00 98.00

Structural Calculations (Green Roof)

CONTROLLING NET ALOWABLE LOAD (PSF)

TIMOTHY CONROY

2175 K STREET NW, WASHINGTON DC 20037

GREEN ROOF ANALYSIS

- PROJECT OVERVIEW
- § OVERALL GOAL
- § BACKUP GENERATOR ANALYSIS
 - GREEN ROOF ANALYSIS
 - Area of Potential Improvement
 - PROPOSED SOLUTION
 - BENEFITS AND DRAWBACKS
 - DESCRIPTION OF EXISTING DESIGN
 - PROPOSED CHANGES
 - STRUCTURAL LOAD ANALYSIS
 - RESULTING ENERGY SAVINGS
 - COST ANALYSIS
 - SCHEDULE AND CONSTRUCTABILITY
 - CONCLUSION
- § CURTAIN WALL REDESIGN ANALYSIS
- § SMART POWER STRIP ANALYSIS
- § SUMMARY OF FINDINGS
- § ACKNOWLEDGEMENTS

DEFLECTION ANALYSIS

GREEN ROOF LOAD

MAX DEFLECTION: 0.2092"

(0% of Beams Fail)

FULLY LOADED

MAX DEFLECTION: 0.2549"

(20% of Beams Fail)

				Deflection	n Sum	nary (q=20	.0 psf)				I					Deflectio	n Sumn	1ary (q=69.	6 psf)			
Size	Height	Base		mber Pro T Flange		Max Load	I	E	Deflection	Check L/180		Size	Height	Base		mber Pro T Flange		Max Load	I	E	Deflection	Check L/180
18x35 18X35 18x35 18x35 21X44 21X44 18x40 18x40 21x44 21X44 18x76 18x60	20.63 17.88 17.88 20.63 20.63 18.25 18.25	6.00 6.00 6.50 6.50 6.00 6.50 6.50 6.50		0.5000 0.5000 0.4375 0.4375 0.6875 0.6875	36.33 35.08 35.08 35.08 39.51 39.51 37.58 37.58 36.58 37.58 36.33	1643.58 1776.50 1813.00 1648.75 1930.95 1885.33 1855.50 1873.75 1966.55 1763.55 3493.59 2561.25	7.92 7.92 10.10 10.10 9.04 9.04 10.10 10.10 76.37 24.29	2.90E+07 2.90E+07 2.90E+07 2.90E+07 2.90E+07 2.90E+07 2.90E+07 2.90E+07 2.90E+07 2.90E+07 2.90E+07	0.153 0.156 0.142 0.209 0.204 0.184 0.186 0.157 0.156 0.031 0.083	0.2019	<i>W W W W W W W W W W</i>	7 18x35 7 18x35 7 21X44 7 21X44 7 18x40 7 18x40 7 21x44 7 21X44 7 18x76 7 18x60	17.75 17.75 20.63 20.63 17.88 17.88 20.63 20.63 18.25	6.00 6.50 6.50 6.00 6.00 6.50 6.50 11.00 7.50	0.3750 0.3125 0.3125 0.3750 0.3750 0.4375 0.4375	0.4375 0.4375 0.4375 0.4375 0.4375 0.5000 0.5000 0.4375 0.4375 0.6875	35.08 39.51 39.51 37.58 37.58 36.58 37.58 35.08 36.33	2027.98 2198.10 2259.40 1983.55 2352.55 2275.93 2308.10 2338.75 2264.15 1977.76 3939.96 2945.65	10.10 10.10 9.04 9.04 10.10 10.10 76.37 24.29	2.90E+07 2.90E+07 2.90E+07 2.90E+07 2.90E+07 2.90E+07 2.90E+07 2.90E+07 2.90E+07	0.2004 0.1888 0.1941 0.1704 0.2549 0.2466 0.2286 0.2317 0.1803 0.1754 0.0351 0.0949	0.2019
21x50 12x19 18x40 4x104 16x26 12x14 14x22 21x44	17.88 24.00 15.75 11.88 13.75	4.00 6.00 12.75 5.50 4.00 5.00	0.3750 0.2500 0.3125 0.5000 0.2500 0.1875 0.2500 0.3750	0.5000 0.7500 0.3750 0.2500 0.3125	39.51 24.50 24.50 39.51 23.25 6.50 11.50 23.25	2011.20 1362.09 3078.64 4646.82 2177.46 9238.01 6678.53 4167.67	2.01 9.04 129.78 5.22 1.34 3.27	2.90E+07 2.90E+07 2.90E+07 2.90E+07 2.90E+07 2.90E+07 2.90E+07 2.90E+07	0.016	0.2195 \$\square\$ 0.1361 \$\square\$ 0.1361 \$\square\$ 0.2195 \$\square\$ 0.1292 \$\square\$ 0.0361 \$\square\$ 0.0639 \$\square\$ 0.1292 \$\square\$	<i>N N N N N N N N N N</i>	7 12x19 7 18x40 7 24x104 7 16x26 7 12x14 7 14x22	12.13 17.88 24.00	4.00 6.00 12.75 5.50 4.00 5.00	0.3125 0.5000	0.7500 0.3750 0.2500 0.3125	39.51 24.50 24.50 39.51 23.25 6.50 11.50 23.25	2350.53 1690.69 3268.76 5118.02 2464.64 9523.21 7546.53 4428.07	2.01 9.04 129.78 5.22 1.34 3.27	2.90E+07 2.90E+07 2.90E+07 2.90E+07 2.90E+07 2.90E+07 2.90E+07 2.90E+07		0.2195

Max Deflection 0.2092 in.

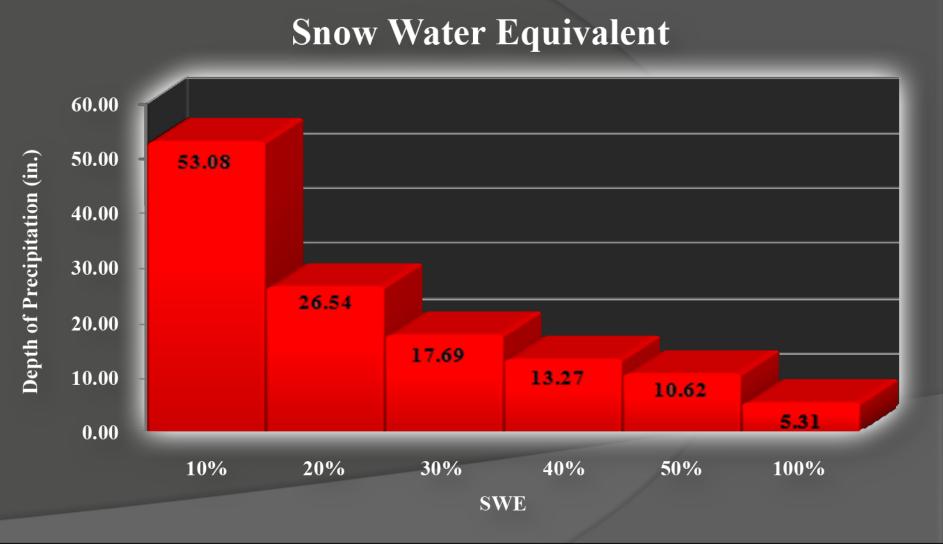
Max Deflection 0.2549 in.

GREEN ROOF ANALYSIS

PROJECT OVERVIEW

- § OVERALL GOAL
- § BACKUP GENERATOR ANALYSIS

GREEN ROOF ANALYSIS

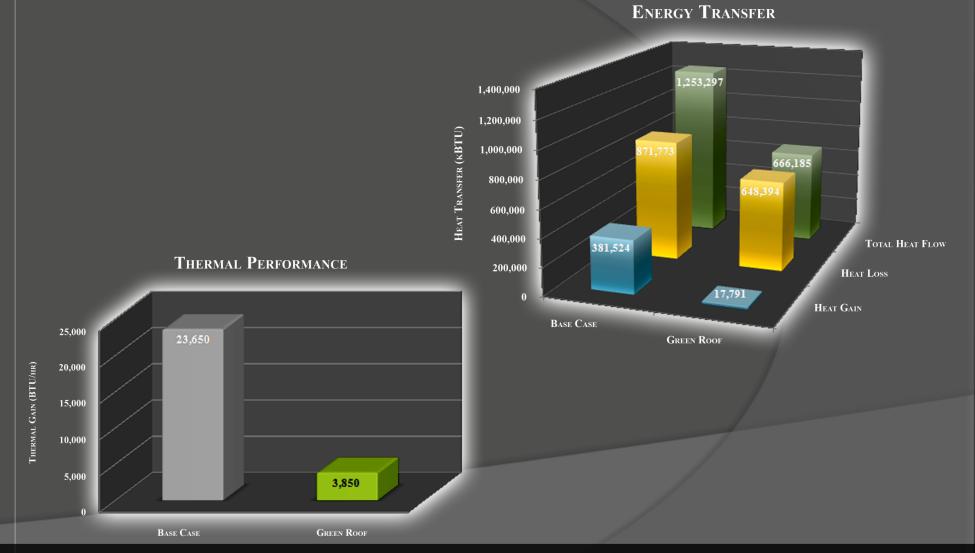

- AREA OF POTENTIAL IMPROVEMENT
- PROPOSED SOLUTION
- BENEFITS AND DRAWBACKS
- Description of Existing Design
- PROPOSED CHANGES
- STRUCTURAL LOAD ANALYSIS
- RESULTING ENERGY SAVINGS
- COST ANALYSIS
- SCHEDULE AND CONSTRUCTABILITY
- CONCLUSION
- § CURTAIN WALL REDESIGN ANALYSIS
- § SMART POWER STRIP ANALYSIS
- § SUMMARY OF FINDINGS
- § ACKNOWLEDGEMENTS

ROOF FAILURE CAUSED BY SNOW LOAD (DUE TO RECENT SNOWFALL IN THE DC AREA)

SNOW WATER EQUIVALENT

S	SWE	Precip. (in. & ft.)
	10%	53.08" (4.42')
0-20 er) Prin	20%	26.54" (2.21')
PICAL 10-20% WINTER AND 1-40% SPRING	30%	17.69" (1.47')
[YPIC, W 20-40	40%	13.27" (1.11')
Γ ζ	50%	10.62" (0.89')
WATER	100%	5.31" (0.44')

Note: 10% SWE when air temp. is near 14°F
20% SWE when air temp. is near 32°F
100% SWE indicates max. distance from primary drain to secondary



- § OVERALL GOAL
- § BACKUP GENERATOR ANALYSIS
 - GREEN ROOF ANALYSIS
 - AREA OF POTENTIAL IMPROVEMENT
 - PROPOSED SOLUTION
 - BENEFITS AND DRAWBACKS
- Description of Existing Design
- PROPOSED CHANGES
- STRUCTURAL LOAD ANALYSIS
- RESULTING ENERGY SAVINGS
- COST ANALYSIS
- SCHEDULE AND CONSTRUCTABILITY
- CONCLUSION
- § CURTAIN WALL REDESIGN ANALYSIS
- § SMART POWER STRIP ANALYSIS
- § SUMMARY OF FINDINGS
- § ACKNOWLEDGEMENTS

ENERGY SAVINGS

PRIMARILY ANALYZED CONDUCTION
BASE MEMBRANE TEMPERATURE: 158°F
GREEN ROOF MEMBRANE TEMPERATURE: 86°F
INTERIOR DESIGN TEMPERATURE: 72°F

THERMAL PERFORMANCE
84% REDUCTION IN THERMAL GAIN

PROJECT OVERVIEW OVERALL GOAL BACKUP GENERATOR ANALYSIS GREEN ROOF ANALYSIS AREA OF POTENTIAL IMPROVEMENT PROPOSED SOLUTION BENEFITS AND DRAWBACKS DESCRIPTION OF EXISTING DESIGN PROPOSED CHANGES STRUCTURAL LOAD ANALYSIS RESULTING ENERGY SAVINGS COST ANALYSIS SCHEDULE AND CONSTRUCTABILITY CONCLUSION CURTAIN WALL REDESIGN ANALYSIS SMART POWER STRIP ANALYSIS SUMMARY OF FINDINGS

COST COMPARISON


EXISTING EPDM ROOF

COST PER SQUARE FOOT: \$11.00
TOTAL INSTALLATION COST: \$60,500
YEARLY SAVINGS: N/A
50 YEAR COST: \$375,500
PAYBACK PERIOD: N/A

MODULAR GREEN ROOF

COST PER SQUARE FOOT: \$19.26
TOTAL INSTALLATION COST: \$105,900
YEARLY SAVINGS: \$5,056
50 YEAR COST: \$105,900
PAYBACK PERIOD: 20.9 YRS

RELATIVE PAYBACK PERIOD: 7.4 YRS

ACKNOWLEDGEMENTS

- § PROJECT OVERVIEW
- § OVERALL GOAL
- § BACKUP GENERATOR ANALYSIS
- GREEN ROOF ANALYSIS
- Area of Potential Improvement
- PROPOSED SOLUTION
- BENEFITS AND DRAWBACKS
- Description of Existing Design
- PROPOSED CHANGES
- STRUCTURAL LOAD ANALYSIS
- RESULTING ENERGY SAVINGS
- COST ANALYSIS
- SCHEDULE AND CONSTRUCTABILITY
- CONCLUSION
- § CURTAIN WALL REDESIGN ANALYSIS
- § SMART POWER STRIP ANALYSIS
- § SUMMARY OF FINDINGS
- § ACKNOWLEDGEMENTS

SCHEDULE IMPACT

- •INSTALLATION TIME: 1 DAY (BASED UPON 5,000 SQFT PER DAY)
- •Work could be performed on Weekend
- •THEREFORE NOT IMPACTING THE OVERALL PROJECT SCHEDULE

CONSTRUCTABILITY IMPACT

- •PROPOSED MODULAR SYSTEM USES EXISTING SUBSTRATE
- •MODULES ARE EASY TO INSTALL INTO GRID PATTERN

TIMOTHY CONROY

2175 K STREET NW, WASHINGTON DC 20037

Construction Management

- PROJECT OVERVIEW
- OVERALL GOAL
- BACKUP GENERATOR ANALYSIS
- GREEN ROOF ANALYSIS
- AREA OF POTENTIAL IMPROVEMENT
- PROPOSED SOLUTION
- BENEFITS AND DRAWBACKS
- DESCRIPTION OF EXISTING DESIGN
- PROPOSED CHANGES
- STRUCTURAL LOAD ANALYSIS
- RESULTING ENERGY SAVINGS
- Cost Analysis
- SCHEDULE AND CONSTRUCTABILITY
- CONCLUSION
- CURTAIN WALL REDESIGN ANALYSIS
- SMART POWER STRIP ANALYSIS
- SUMMARY OF FINDINGS
- ACKNOWLEDGEMENTS

CONCLUSION

TOTAL COST: \$105,900 PAYBACK PERIOD: 20.9 YRS ADDED COST: \$45,400 PAYBACK PERIOD: 7.4 YRS

ANNUAL ENERGY SAVINGS: \$5,056

COST PER SQUARE FOOT NEW CONSTRUCTION: \$3.14

- § OVERALL GOAL
- § BACKUP GENERATOR ANALYSIS
- § GREEN ROOF ANALYSIS
 - CURTAIN WALL REDESIGN ANALYSIS
 - AREA OF POTENTIAL IMPROVEMENT
 - PROPOSED SOLUTION
 - BENEFITS AND DRAWBACKS
 - DESCRIPTION OF EXISTING SYSTEM
 - PROPOSED CHANGES
 - ENERGY SAVINGS
 - COST COMPARISON
 - SCHEDULE AND CONSTRUCTABILITY

SMART POWER STRIP ANALYSIS

- § SUMMARY OF FINDINGS
- § ACKNOWLEDGEMENTS

BUILDING FAÇADE ACCOUNTS FOR 75% OF BUILDING ENVELOPE

TYPICALLY ALL FOUR ELEVATIONS ARE TREATED THE SAME IN

TERMS OF DESIGN

EACH ELEVATION RECEIVES DIFFERING AMOUNTS OF SOLAR GAIN AND THEREFORE SHOULD BE DESIGNED ACCORDINGLY

TIMOTHY CONROY

2175 K STREET NW, WASHINGTON DC 20037

Construction Management

- PROJECT OVERVIEW
- § OVERALL GOAL
- § BACKUP GENERATOR ANALYSIS
- § GREEN ROOF ANALYSIS
 - CURTAIN WALL REDESIGN ANALYSIS
 - Area of Potential Improvement
 - PROPOSED SOLUTION
 - BENEFITS AND DRAWBACKS
 - DESCRIPTION OF EXISTING SYSTEM
 - Proposed Changes
 - ENERGY SAVINGS
 - COST COMPARISON
 - SCHEDULE AND CONSTRUCTABILITY
- SMART POWER STRIP ANALYSIS
 SUMMARY OF FINDINGS
- § ACKNOWLEDGEMENTS

REDESIGN THE BUILDING'S SOUTH AND WEST ELEVATIONS USING
SUPER INSULATED GLAZING

Note: the information needed for this analysis was received relatively late in comparison to the other analyses and therefore this is only a partial analysis

TIMOTHY CONROY

2175 K STREET NW, WASHINGTON DC 20037

- § PROJECT OVERVIEW
- § OVERALL GOAL
- § BACKUP GENERATOR ANALYSIS
- § GREEN ROOF ANALYSIS
 - CURTAIN WALL REDESIGN ANALYSIS
 - Area of Potential Improvement
 - PROPOSED SOLUTION
 - BENEFITS AND DRAWBACKS
 - DESCRIPTION OF EXISTING SYSTEM
 - Proposed Changes
 - ENERGY SAVINGS
 - COST COMPARISON
 - SCHEDULE AND CONSTRUCTABILITY
- § SMART POWER STRIP ANALYSIS
- § SUMMARY OF FINDINGS
- § ACKNOWLEDGEMENTS

BENEFITS

CUSTOMIZING EACH ELEVATION BASED UPON SOLAR GAIN AND OTHER FACTORS CAN GREATLY
INCREASE THE PERFORMANCE OF THE BUILDING ENVELOPE

DRAWBACKS

Doing so results in multiple designs which add time and increase cost

TIMOTHY CONROY

2175 K STREET NW, WASHINGTON DC 20037

CURTAIN WALL REDESIGN ANALYSIS

- § PROJECT OVERVIEW
- § OVERALL GOAL
- § BACKUP GENERATOR ANALYSIS
- § GREEN ROOF ANALYSIS
 - CURTAIN WALL REDESIGN ANALYSIS
 - Area of Potential Improvement
 - PROPOSED SOLUTION
 - BENEFITS AND DRAWBACKS
 - DESCRIPTION OF EXISTING SYSTEM
 - PROPOSED CHANGES
 - ENERGY SAVINGS
 - COST COMPARISON
 - SCHEDULE AND CONSTRUCTABILITY
- § SMART POWER STRIP ANALYSIS
- § SUMMARY OF FINDINGS
- § ACKNOWLEDGEMENTS

EXISTING DESIGN

North:

BRICK VENEER WITH PUNCH WINDOWS

EAST:

BRICK VENEER WITH RIBBON WINDOWS

SOUTH AND WEST:

HARMON UNITIZED CURTAIN WALL SYSTEM
FULL STORY HEIGHT MODULES
U-VALUE: 0.31 btu/hr-ft²-°f
SOLAR SHADING LOUVER SYSTEM

- § PROJECT OVERVIEW
- § OVERALL GOAL
- § BACKUP GENERATOR ANALYSIS
- § GREEN ROOF ANALYSIS
 - CURTAIN WALL REDESIGN ANALYSIS
 - AREA OF POTENTIAL IMPROVEMENT
 - Proposed Solution
 - BENEFITS AND DRAWBACKS
 - DESCRIPTION OF EXISTING SYSTEM
 - PROPOSED CHANGES
 - ENERGY SAVINGS
 - COST COMPARISON
 - SCHEDULE AND CONSTRUCTABILITY
- § SMART POWER STRIP ANALYSIS
- § SUMMARY OF FINDINGS
- § ACKNOWLEDGEMENTS

PROPOSED CHANGES

NORTH AND EAST:

Unchanged

SOUTH AND WEST:

SCHUCO UNITIZED CURTAIN WALL SYSTEM
FULL STORY HEIGHT MODULES
U-VALUE: 0.14 btu/hr-ft²-°f

BUILDING INTEGRATED SOLAR COLLECTORS

TRANSLUCENT VISION GLASS COLLECTORS
SEMITRANSPARENT NON-VISION GLASS COLLECTORS

TIMOTHY CONROY

2175 K STREET NW, WASHINGTON DC 20037

Construction Management

CURTAIN WALL REDESIGN ANALYSIS

- § PROJECT OVERVIEW
- § OVERALL GOAL
- § BACKUP GENERATOR ANALYSIS
- § GREEN ROOF ANALYSIS
 - CURTAIN WALL REDESIGN ANALYSIS
 - Area of Potential Improvement
 - PROPOSED SOLUTION
 - BENEFITS AND DRAWBACKS
 - DESCRIPTION OF EXISTING SYSTEM
 - PROPOSED CHANGES
 - ENERGY SAVINGS
 - COST COMPARISON
 - SCHEDULE AND CONSTRUCTABILITY
- § SMART POWER STRIP ANALYSIS
- § SUMMARY OF FINDINGS
- § ACKNOWLEDGEMENTS

ENERGY SAVINGS

45% REDUCTION DURING SUMMER
41% REDUCTION DURING WINTER

167,323 KWHRS ANNUALLY \$132,641 ANNUALLY

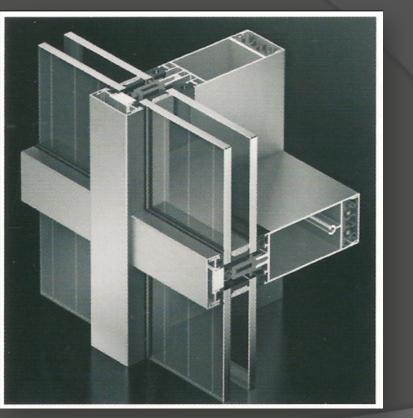
*BASED UPON GLAZING REDESIGN (NO SOLAR COLLECTORS)

Mechanical Load Calculations

		General Bu	ilding Dat	a			Sum	mer			Win	ter		Redu	ction
Level	Elevation	Material	Length	Height	Area	U-Value	Tout	T _{in}	Heat Flow	U-Value	Tout	T _{in}	Heat Flow	Summer	Winter
			(ft)	(ft)	(ft²)	[BTU/(hr-ft2-F)]	(°F)	(°F)	BTU/hr	[BTU/(hr-ft2-F)]	(°F)	(°F)	(BTU/hr)	%	%
9	North	Brick	134.86	13	1753.18	0.07	85	70	1737	0.07	46	68	-2548		
	East	Curtain Wall	73.88	13	960.44	0.07	85	70	952	0.07	46	68	-1396		
	South	Curtain Wall	136.91	13	1779.83	0.31	85	70	8276	0.29	46	68	-11355		
	West	Curtain Wall	60.39	13	785.07	0.31	85	70	3651	0.29	46	68	-5009		
10	North	Brick	134.86	13	1753.18	0.07	85	70	1737	0.07	46	68	-2548		
	East	Curtain Wall	73.88	13	960.44	0.07	85	70	952	0.07	46	68	-1396		
	South	Curtain Wall	136.91	13	1779.83	0.31	85	70	8276	0.29	46	68	-11355		
	West	Curtain Wall	60.39	13	785.07	0.31	85	70	3651	0.29	46	68	-5009		
11	North	Brick	134.86	13	1753.18	0.07	85	70	1737	0.07	46	68	-2548		
	East	Curtain Wall	73.88	13	960.44	0.07	85	70	952	0.07	46	68	-1396		
	South	Curtain Wall	136.91	13	1779.83	0.31	85	70	8276	0.29	46	68	-11355		
	West	Curtain Wall	60.39	13	785.07	0.31	85	70	3651	0.29	46	68	-5009		
									43846				-60922	N/A	N/A

	9	North	Brick	134.86	13	1753.18	0.07	85	70	1737	0.07	46	68	-2548		
		East	Curtain Wall	73.88	13	960.44	0.07	85	70	952	0.07	46	68	-1396		
		South	Curtain Wall	136.91	13	1779.83	0.14	85	70	3762	0.14	46	68	-5518		
		West	Curtain Wall	60.39	13	785.07	0.14	85	70	1659	0.14	46	68	-2434		
Design	10	North	Brick	134.86	13	1753.18	0.07	85	70	1737	0.07	46	68	-2548		
Ö		East	Curtain Wall	73.88	13	960.44	0.07	85	70	9 52	0.07	46	68	-1396		
		South	Curtain Wall	136.91	13	1779.83	0.14	85	70	3762	0.14	46	68	-5518		
Š		West	Curtain Wall	60.39	13	785.07	0.14	85	70	1659	0.14	46	68	-2434		
Proposed	11	North	Brick	134.86	13	1753.18	0.07	85	70	1737	0.07	46	68	-2548		
-		East	Curtain Wall	73.88	13	960.44	0.07	85	70	9 52	0.07	46	68	-1396		
		South	Curtain Wall	136.91	13	1779.83	0.14	85	70	3762	0.14	46	68	-5518		
L		West	Curtain Wall	60.39	13	785.07	0.14	85	70	1659	0.14	46	68	-2434		
										24331				-35685	45	41

CURTAIN WALL REDESIGN ANALYSIS


- § PROJECT OVERVIEW
- § OVERALL GOAL
- § BACKUP GENERATOR ANALYSIS
- § GREEN ROOF ANALYSIS
 - CURTAIN WALL REDESIGN ANALYSIS
 - Area of Potential Improvement
 - PROPOSED SOLUTION
 - BENEFITS AND DRAWBACKS
 - Description of Existing System
 - Proposed Changes
 - ENERGY SAVINGS
 - COST COMPARISON
 - SCHEDULE AND CONSTRUCTABILITY
- § SMART POWER STRIP ANALYSIS
- § SUMMARY OF FINDINGS
- § ACKNOWLEDGEMENTS

COST COMPARISON BY DESIGN

Design	Initial Cost	Incentives	Annual Savings	Net Cost	Payback	Net Added Cost	Payback
Existing	\$ 769,470.00						
Glazing Redesign	\$ 846,417.00	\$ 13,850.46	\$ 132,641.08	\$ 699,925.46	6.1	\$ (69,544.54)	0.0
Non-Vision Only	\$ 1,000,311.00	\$ 46,850.46	\$ 138,682.36	\$ 814,778.18	6.4	\$ (31,638.82)	0.0
Both Collectors	\$ 1,231,152.00	\$ 46,850.46	\$ 152,623.79	\$ 1,031,677.75	7.4	\$ 262,207.75	1.7

INITIAL COST VERSUS ADDED COST

Design	Init	ial Cost	Αd	ded Cost	Anı	nual Savings
Existing	\$	769,470.00				
Glazing Redesign	\$	846,417.00	\$	76,947.00	\$	132,641.08
Non-Vision Only	\$	1,000,311.00	\$	230,841.00	\$	138,682.36
Both Collectors	\$	1,231,152.00	\$	461,682.00	\$	152,623.79

Schuco FW50+.SI Curtain Wall System

(Image Provided by Schuco USA)

- § PROJECT OVERVIEW
- § OVERALL GOAL
- § BACKUP GENERATOR ANALYSIS
- § GREEN ROOF ANALYSIS
 - CURTAIN WALL REDESIGN ANALYSIS
 - Area of Potential Improvement
 - PROPOSED SOLUTION
 - BENEFITS AND DRAWBACKS
 - DESCRIPTION OF EXISTING SYSTEM
 - Proposed Changes
 - ENERGY SAVINGS
 - COST COMPARISON
 - SCHEDULE AND CONSTRUCTABILITY
- § SMART POWER STRIP ANALYSIS
- § SUMMARY OF FINDINGS
- § ACKNOWLEDGEMENTS

SCHEDULE IMPACT

- •Similar weight systems would result in the same installation time
- •CONNECTION DETAILS ARE SIMILAR
- •IF SOLAR COLLECTORS WERE INCORPORATED
 - •CONNECTING PANEL WIRING TOGETHER
 - •Installing inverters
 - •CONNECTION TO BUILDING ELECTRICAL SYSTEM

CONSTRUCTABILITY IMPACT

• BOTH SYSTEMS CONSIST OF A INSULATING GLASS UNIT WITH TWO LITES OF THE SAME THICKNESSES

*Further research would be needed to better cover the topics addressed in this analysis

TIMOTHY CONROY

2175 K STREET NW, WASHINGTON DC 20037

- § PROJECT OVERVIEW
- § OVERALL GOAL§ BACKUP GENERATOR ANALYSIS
- § GREEN ROOF ANALYSIS
- § CURTAIN WALL REDESIGN ANALYSIS
- SMART POWER STRIP ANALYSIS
- Area of Potential Improvement
- PROPOSED SOLUTION
- ENERGY SAVINGS
- Conclusion
- § SUMMARY OF FINDINGS
- § ACKNOWLEDGEMENTS

MOST PEOPLE LEAVE THEIR COMPUTERS RUNNING CONTINUOUSLY
WITHOUT EVER TURNING THEM OFF

Some computers are set up to enter stand-by mode when not in use but this results in minimal energy savings

TIMOTHY CONROY

2175 K STREET NW, WASHINGTON DC 20037

Construction Management

- § Project Overview
- § OVERALL GOAL
- § BACKUP GENERATOR ANALYSIS
- § GREEN ROOF ANALYSIS
- § CURTAIN WALL REDESIGN ANALYSIS
- SMART POWER STRIP ANALYSIS
- Area of Potential Improvement
- PROPOSED SOLUTION
- ENERGY SAVINGS
- Conclusion
- § SUMMARY OF FINDINGS
- § ACKNOWLEDGEMENTS

REDUNDANCY

If the user forgets to put the computer into Sleep or Hibernation mode, program the computer to do so

POWER STRIP RECOGNIZES POWER STATE OF COMPUTER AND CAN POWER OFF PERIPHERAL DEVICES AUTOMATICALLY

TIMOTHY CONROY

2175 K STREET NW, WASHINGTON DC 20037

- § PROJECT OVERVIEW
- § OVERALL GOAL
- § BACKUP GENERATOR ANALYSIS
- § GREEN ROOF ANALYSIS
- § CURTAIN WALL REDESIGN ANALYSIS
 - SMART POWER STRIP ANALYSIS
 - AREA OF POTENTIAL IMPROVEMENT
 - PROPOSED SOLUTION
- ENERGY SAVINGS
- Conclusion
- § SUMMARY OF FINDINGS
- § ACKNOWLEDGEMENTS

2175 K STREET

(FOUR HUNDRED COMPUTERS)

UNMANAGED COMPUTER (ANNUALLY)

RUN TIME: 3.5 MILLION HRS
ELECTRICITY USAGE: 823,440 KWHR
ELECTRICITY COST: \$127,057

MANAGED COMPUTER (ANNUALLY)

RUN TIME: 832,000 HRS
ELECTRICITY USAGE: 195,520 KWHR
ELECTRICITY COST: \$30,169

\$96,888 *SAVINGS ANNUALLY*

BASE CASE (ONE COMPUTER)

UNMANAGED COMPUTER
(ANNUALLY)

RUN TIME: 8,760 HRS
ELECTRICITY USAGE: 2,059 KWHR
ELECTRICITY COST: \$317.64

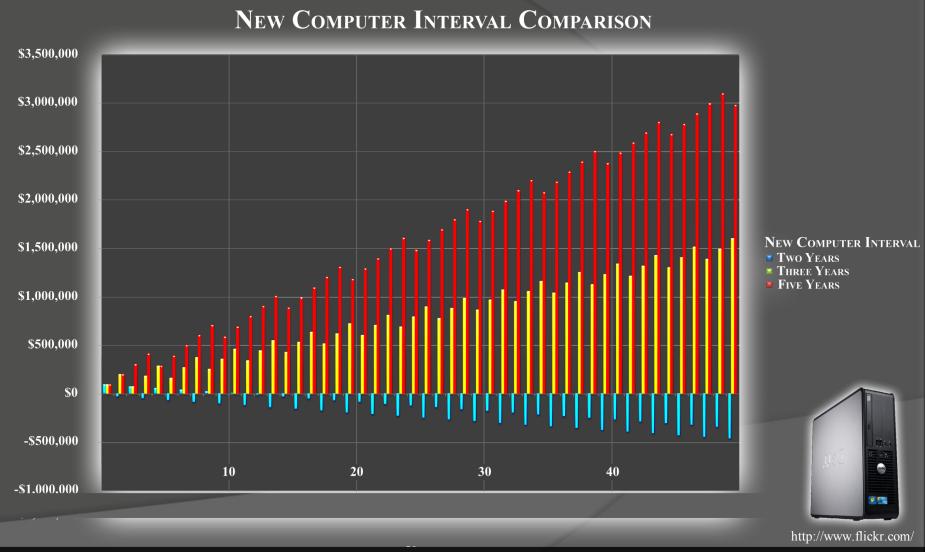
MANAGED COMPUTER
(ANNUALLY)

RUN TIME: 2,080 HRS
ELECTRICITY USAGE: 489 KWHR
ELECTRICITY COST: \$75.42

76% REDUCTION

- § PROJECT OVERVIEW
- § OVERALL GOAL
- § BACKUP GENERATOR ANALYSIS
- § GREEN ROOF ANALYSIS
- § CURTAIN WALL REDESIGN ANALYSIS
- § SMART POWER STRIP ANALYSIS
- AREA OF POTENTIAL IMPROVEMENT
- PROPOSED SOLUTION
- ENERGY SAVINGS
- CONCLUSION
- § SUMMARY OF FINDINGS
- § ACKNOWLEDGEMENTS

CONCLUSION


50 YEAR SAVINGS: \$5.3 MILLION (\$13,200 PER COMPUTER)

PAYBACK PERIOD: 1.4 MONTHS

NEW COMPUTER INTERVAL
5 YEAR: \$284,700 (RED)
3 YEAR: \$73,500 (YELLOW)
2 YEAR: -\$32,000 (BLUE)

Breakeven Interval: 2.39 years

(BASED UPON DELL OPTIPLEX 380 SFF WITH 22" MONITOR - \$580.00)

- § PROJECT OVERVIEW
- § OVERALL GOAL
- § BACKUP GENERATOR ANALYSIS
- § Green Roof Analysis
- § CURTAIN WALL REDESIGN ANALYSIS
- § SMART POWER STRIP ANALYSIS
- SUMMARY OF FINDINGS
- § ACKNOWLEDGEMENTS

GRAND TOTALS:

Energy Savings: 3,047,529 kWhr Added Cost: \$744,279

COST SAVINGS: \$378,583

PAYBACK PERIOD: 1.97 YRS

COST PER SQUARE FOOT:

	New Construction	TOTAL BUILDING
BACKUP GENERATOR	\$16.31	\$3.17
GREEN ROOF	\$3.14	\$0.61
GLAZING REDESIGN	\$2.28	\$0.44
SMART POWER STRIPS	\$0.36	\$0.07
	\$22.09	\$4.29

gy Savings Summar	y	
kup Generator	2,163,200	kWhrs
en Roof	32,769	
ing Redesign	167,323	
art Power Strips	684,237	_
	3,047,529	kWhrs

Added Cost Summary		
Backup Generator	\$ 549,412	
Green Roof	\$ 105,924	
Glazing Redesign	\$ 76,947	
Smart Power Strips	\$ 11,996	
	\$ 744,279	

ost Savings Summary	_		
Backup Generator	\$	135,308 *	
Green Roof	\$	5,056	
Glazing Redesign	\$	132,641	
Smart Power Strips	\$	105,578	
	\$	378,583	

Payback Period Summary			
Backup Generator	4.06 years		
Green Roof	20.95		
Glazing Redesign	6.07		
Smart Power Strips	0.11		

TIMOTHY CONROY

2175 K STREET NW, WASHINGTON DC 20037

- § PROJECT OVERVIEW
- § OVERALL GOAL
- § BACKUP GENERATOR ANALYSIS
- § GREEN ROOF ANALYSIS
- § CURTAIN WALL REDESIGN ANALYSIS
- § SMART POWER STRIP ANALYSIS
- § SUMMARY OF FINDINGS
- § ACKNOWLEDGEMENTS

AE 542: BUILDING ENCLOSURE SCIENCE AND DESIGN

ENERGY TRANSFER EQUATIONS AND DESIGN PRINCIPLES

AE 597D: Sustainable Building Methods

OVERALL ENERGY CONSERVATION THEME
FOUNDATION FOR BACKUP GENERATOR ANALYSIS

AE 572: PROJECT DEVELOPMENT AND DELIVERY PLANNING

FINANCIAL MODELS AND LIFECYCLE COST ANALYSIS

PAYBACK PERIOD ANALYSIS

TIMOTHY CONROY

2175 K STREET NW, WASHINGTON DC 20037

ACKNOWLEDGEMENTS

- § PROJECT OVERVIEW
- § OVERALL GOAL
- § BACKUP GENERATOR ANALYSIS
- § GREEN ROOF ANALYSIS
- § CURTAIN WALL REDESIGN ANALYSIS
- § SMART POWER STRIP ANALYSIS
- § SUMMARY OF FINDINGS
- *ACKNOWLEDGEMENTS*

JAMES G. DAVIS CONSTRUCTION CORPORATION

DENNIS COTTER EXECUTIVE VICE PRESIDENT

JAMES DUGAN

SENIOR VICE PRESIDENT

DO NOTE OF THE SENIOR SENIOR

PAUL ATHANAS PROJECT EXECUTIVE

JOHN PACITTI PROJECT MANAGER

PATRICK COTTER ASSISTANT PROJECT MANAGER
WILLIAM COX ASSISTANT PROJECT MANAGER

DENNIS LEWIS TIL SENIOR SUPERINTENDENT

LESTER FUNKHOUSER A SUPER NJENDENT

STEVE HAWRYLUK SENIOR PROJECT MANAGER

MINSHALL STEWART PROPERTIES

JOHN STEWART OWNER
THADDEUS MINSHALL OWNER

FOX ARCHITECTS

J. P. SPICKLER OF ALL, MY FAMILY AND FRIENDS

BRAD KING ARCHITECT ARCHITECT ARCHITECT

